Pediatric Infectious Disease

Register      Login

VOLUME 1 , ISSUE 4 ( October-December, 2019 ) > List of Articles


Newer Antibiotics: Need for More Studies in Neonates and Children

Keywords : New antibiotics, Pediatric population, Resistance

Citation Information : Newer Antibiotics: Need for More Studies in Neonates and Children. Pediatr Inf Dis 2019; 1 (4):164-168.

DOI: 10.5005/jp-journals-10081-1212

License: CC BY-NC 4.0

Published Online: 01-10-2020

Copyright Statement:  Copyright © 2019; The Author(s).


This article reviews few trials assessing the use of newer antibiotics in the neonates and children. Published data show that more studies are conducted in the adult population (50 times) when compared to children with respect to the testing of newer antibiotics. The figures are approximately 177 and 580 times more as compared to neonatal and preterm babies, respectively. Although there is paucity of data in the pediatric domain, carbavance (meropenem + vaborbactam) and solithromycin deserve special mention, as they are currently being used in pediatric clinical trials.

PDF Share
  1. Chemical Sciences Roundtable; Board on Chemical Sciences and Technology; Division on Earth and Life Studies; National Research Council. Technological Challenges in Antibiotic Discovery and Development: A Workshop Summary. Washington (DC): National Academies Press (US); 2014 Jan 27. 2, Challenges In Overcoming Antibiotic Resistance. Available from:
  2. Infectious Diseases Society of America. The 10x‘20 initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 2010;50(8):1081–1083. DOI: 10.1086/652237.
  3. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T 2015;40(4):277–283.
  4. Kallen AJ, Srinivasan A. Current epidemiology of multidrug–resistant gram-negative bacilli in the United States. Infect Control Hosp Epidemiol 2010;31(Suppl 1):S51–S54. DOI: 10.1086/655996.
  5. Thompson G, Barker CI, Folgori L, et al. Global shortage of neonatal and paediatric antibiotic trials: rapid review. BMJ Open 2017;7(10):e016293. DOI: 10.1136/bmjopen-2017-016293.
  6. Guidance for industry. Pediatric study plans: content of and process for submitting initial pediatric study plans and amended initial pediatric study plans. (accessed June 2016).
  7. Lutsar I. Often neglected: paediatric drug development - a regulatory and clinical view. Amsterdam, Netherlands, 2016. (S219 - Symposium lecture).
  8. Shaw KJ, Barbachyn MR. The Oxazolidinones: past, present, and future. Ann N Y Acad Sci 2011;1241:48–70. DOI: 10.1111/j.1749-6632.2011.06330.x.
  9. Kali A, Charles MV, Srirangaraj S. Cadazolid: a new hope in the treatment of Clostridium difficile infection. Australas Med J 2015;8(8):253–262. DOI: 10.4066/AMJ.2015.2441.
  10. McCool R, Gould IM, Eales J, et al. Systematic review and network meta-analysis of tedizolid for the treatment of acute bacterial skin and skin structure infections caused by MRSA. BMC Infect Dis 2017;17(1):39. DOI: 10.1186/s12879-016-2100-3.
  11. Karageorgos SA, Miligkos M, Dakoutrou M, et al. Clinical effectiveness, safety profile, and pharmacokinetics of daptomycin in pediatric patients: a systematic review. J Pediatric Infect Dis Soc 2016;5(4): 446–457. DOI: 10.1093/jpids/piw048.
  12. Gould IM, David MZ, Esposito S, et al. New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents 2012;39(2):96–104. DOI: 10.1016/j.ijantimicag.2011.09.028.
  13. Messina JA, Fowler VG Jr, Corey GR. Oritavancin for acute bacterial skin and skin structure infections. Expert Opin Pharmacother 2015;16(7):1091–1098. DOI: 10.1517/14656566.2015.1026256.
  14. Peng Z, Ling L, Stratton CW, et al. Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg Microbes Infect 2018;7(1):15. DOI: 10.1038/s41426-017-0019-4.
  15. Politano AD, Sawyer RG. NXL-103, a combination of flopristin and linopristin, for the potential treatment of bacterial infections including community-acquired pneumonia and MRSA. Curr Opin Investig Drugs 2010;11(2):225–236.
  16. Qin X, Huang H. Review of nemonoxacin with special focus on clinical development. Drug Des Devel Ther 2014;8:765–774. DOI: 10.2147/DDDT.S63581.
  17. Bassetti M, Pecori D, Cojutti P, et al. Clinical and pharmacokinetic drug evaluation of delafloxacin for the treatment of acute bacterial skin and skin structure infections. Expert Opin Drug Metab Toxicol 2017;13(11):1193–1200. DOI: 10.1080/17425255.2017.1386654.
  18. Yoo BK, Triller DM, Yong CS, et al. Gemifloxacin: a new fluoroquinolone approved for treatment of respiratory infections. Ann Pharmacother 2004;38(7-8):1226–1235. DOI: 10.1345/aph.1E003.
  19. Kocsis B, Domokos J, Szabo D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and Nemonoxacin. Ann Clin Microbiol Antimicrob 2016;15(1):34. DOI: 10.1186/s12941-016-0150-4.
  20. Comstock TL, Karpecki PM, Morris TW, et al. Besifloxacin: a novel anti-infective for the treatment of bacterial conjunctivitis. Clin Ophthalmol 2010;4:215–225. DOI: 10.2147/OPTH.S9604.
  21. Balbisi EA. Cefditoren, a new aminothiazolyl cephalosporin. Pharmacotherapy 2002;22(10):1278–1293. DOI: 10.1592/phco.22.15.1278.33481.
  22. Corey A, So TY. Current clinical trials on the use of ceftaroline in the pediatric population. Clin Drug Investig 2017;37(7):625–634. DOI: 10.1007/s40261-017-0523-2.
  23. Rodriguez BA, Girotto JE, Nicolau DP. Ceftazidime/avibactam and ceftolozane/tazobactam: novel therapy for multidrug resistant gram negative infections in children. Curr Pediatr Rev 2018;14(2):97–109. DOI: 10.2174/1573396314666180308150908.
  24. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, et al. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing enterobacteriaceae. Clin Microbiol Rev 2018;31(2):e00079-17. DOI: 10.1128/CMR.00079-17.
  25. Petty LA, Henig O, Patel TS, et al. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant enterobacteriaceae. Infect Drug Resist 2018;11:1461–1472. DOI: 10.2147/IDR.S150447.
  26. Zhanel GG, Lawrence CK, Adam H, et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs 2018;78(1):65–98. DOI: 10.1007/s40265-017-0851-9.
  27. Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the Carbapenems. Drugs 2007;67(7):1027–1052. DOI: 10.2165/00003495-200767070-00006.
  28. Kaushik A, Ammerman NC, Martins O, et al. In vitro activity of new tetracycline analogs omadacycline and eravacycline against drug-resistant clinical isolates of mycobacterium abscessus. Antimicrob Agents Chemother 2019;63(6):e00470-19. DOI: 10.1128/AAC.00470-19.
  29. Vaishnavi C. Fidaxomicin--the new drug for Clostridium difficile infection. Indian J Med Res 2015;141(4):398–407. DOI: 10.4103/0971-5916.159251.
  30. Alirol E, Wi TE, Bala M, et al. Multidrug-resistant gonorrhea: a research and development roadmap to discover new medicines. PLoS Med 2017;14(7):e1002366. DOI: 10.1371/journal.pmed.1002366.
  31. Figueira M, Fernandes P, Pelton SI. Efficacy of solithromycin (CEM-101) for experimental otitis media caused by nontypeable Haemophilus influenzae and streptococcus pneumonia. Antimicrob Agents Chemother 2016;60(9):5533–5538. DOI: 10.1128/AAC.00863-16.
  32. Paknikar SS, Narayana S. Newer antibacterials in therapy and clinical trials. N Am J Med Sci 2012;4(11):537–547. DOI: 10.4103/1947-2714.103312.
  33. Zhanel GG, Lawson CD, Zelenitsky S, et al. Comparison of the next-generation Aminoglycoside Plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti Infect Ther 2012;10(4):459–473. DOI: 10.1586/eri.12.25.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.