Tuberculosis: Natural History

Gowrishankar NC

ABSTRACT

Tuberculosis is a scourge of mankind. The prechemotherapeutic era has given insights into the much needed natural history of tuberculosis. Once the TB bacilli enter the system, many factors including the age, nutritional status, the host immunity, bacillary load, pathogenicity of TB bacilli and HIV status tilt the balance between infection and disease. A clear understanding of the natural history helps us understand the various presentations in both pulmonary and extrapulmonary tuberculosis.

Keywords: Extrapulmonary, Infection, M. tuberculosis, Pulmonary.

Pediatric Infectious Disease (2019): 10.5005/jp-journals-10081-1102

INTRODUCTION

The natural history of tuberculosis (TB) in children was documented from children with TB in the prechemotherapeutic era. The introduction of the first antituberculous therapy was after the second world war, initially with para-aminosalicylic acid and a few weeks later streptomycin followed by the addition of newer drugs in the early 1950s.1

The diagnosis of Tb in children was possible early in the beginning of the twentieth century when it was found that tuberculin applied locally serves as a method to determine hypersensitivity to it and avoids serious systemic reactions. Among the various methods initially tried, the intracutaneous method of tuberculin injection by Mantoux was adopted by many as the results were reproducible.2

The features described by Avrid Wallgren based on life observation of a prospective follow up of one hundred children who became infected with TB along with the report of 964 children followed up to 25 years providing the clinical signs and symptoms that develop during disease progression in tuberculosis by Edith Lincoln had given the much needed natural history.3,4

The transmission of TB bacilli is mainly from the cough of an infected individual though transmission can occur when the infected person speaks, sneezes or sings expelling tiny particles containing the bacilli. Among the particles coughed out, the largest and heaviest particle having the bacilli settle quickly on surfaces such as walls, furniture, clothing, etc. Some of them, which are airborne and enter the upper airway of another individual do get trapped and removed when they spit or swallow. It is only the droplet nuclei (1–5 microns size), the smallest and lightest particle having the TB bacilli, which can start TB infection. The droplet nuclei can stay in the air in poorly ventilated spaces for hours or days and by its ability to reach the alveoli can start the infection once it reaches the gas exchange units of the lung.

TB infection starts in an uninfected child after inhalation of a single aerosol droplet which may have even less than five bacilli. Once the bacilli penetrate the terminal airway, a localized infective (pneumonic) process starts in the lung parenchyma wherein the bacilli multiply without any restraint in the initial 4–6 weeks. This primary site of infective focus is known as Ghon’s focus. It can occur in any lobe of the lung. From this focus, the bacilli drain through the lymphatics into the regional lymph nodes. The size of the draining lymph node will be much larger than the primary focus. The primary focus, lymphangitis, and lymphadenitis is collectively called as Ghon’s complex or primary complex of Ranke.5

After the occult dissemination through the systemic circulation, the organism can sustain in various organs for a prolonged period. The child can remain asymptomatic even when bacilli are seeded in to distant organs. The risk of progression to disease depends upon a number of variables, but age appears to be the most important factor in immunocompetent children. It has been found that infants have the highest risk for progression to disease with decreasing risk in toddlers, lowest in children in the age group of 5–10 years with the risk increases again in adolescent age group. Adolescents tend to have adult type disease (Table 1).4,6

Disseminated disease is more common in those who have low immunity as in malnourished children and in very young age and in those with altered immune function as they fail to control the multiplication of bacilli in the body. TB meningitis is the most feared among the disseminated disease. Most often the immune response starts between 2 weeks and 12 weeks. The organism can persist both intracellularly (inside the macrophages) and extracellularly (in the caseous center of granulomas). The persistence of these dormant bacilli always poses a risk for reactivation whenever the dynamic balance between the bacilli and host immunity shifts in favor of the bacilli.7

©The Author(s), 2019. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
In children, pulmonary involvement can be in many forms. They are Ghon’s focus, Ghon’s complex with or without cavitation, lymph node disease, a bronchial disease with airway obstruction, obstructive emphysema or atelectasis, consolidation, bronchopneumonia, adult type disease, and miliary disease.

In the Ghon’s complex, the manifestation depends upon the dynamic balance between the bacilli and the immune status of the host. In unsuccessful containment within the lung parenchyma, the bacilli proliferate in the Ghon’s focus leading to destruction and formation of the cavity. This is also known as a progressive primary disease. This happens most often in infants and immunocompromised children. Ghon’s focus can occur anywhere in the lung and the involved lymph nodes are most often the hilar and subcarinal nodes, the enlargement of which compresses the airway extraluminally.

Progressive primary complex indicates that the disease has spread beyond the primary focus and the draining lymph node by bronchogenic spread leading to various disease manifestation of tuberculosis in the lung.

In the lymph nodes, the effects can be due to the sheer size of the lymph nodes itself or due to erosion into the airways. The severity of the airway obstruction, dose, and virulence of the bacilli aspirated and the immune status of the host determines the degree of pathology. Partial obstruction leading onto segmental or lobar hyperinflation and finally atelectasis when the obstruction becomes complete are the end results. This is seen in chest X-ray as collapse-consolidation or segmental tuberculosis.

The lymph nodes can erode into the lumen of the airway and discharge the bacilli into the lung distal to it or the caseous material from the lymph node can cause exuberant granulation tissue formation in the airway leading to pneumonia or consolidation. Further progression is based on the number of bacilli discharged into the airway. A progressive, expansile, caseating pneumonia can ultimately cause parenchymal destruction and cavitition.

In young children, lymph node disease with its attendant complication is common. In adolescents, a parenchymal disease with cavitation is more common, and the bacilli proliferate in the cavities and disseminate to other parts of the lungs through the endobronchial spread.

The involvement of pleura can happen by direct spread from subpleural focus or lymph node but rarely can be from the hematogenous route too. Pleural effusion occurs as a hypersensitivity reaction to the caseous material in the pleural cavity with very few bacilli in the pleural fluid.

The average time for the different manifestations of the disease after the primary infection is described by Wallgren in five different phases. Phase 1 which occurs 3–8 weeks after the primary infection has hypersensitivity manifestations in the form of fever, erythema

<table>
<thead>
<tr>
<th>Age at primary infection (year)</th>
<th>Risk to progress to disease</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>No disease, 50%</td>
</tr>
<tr>
<td></td>
<td>Pulmonary disease, 30–40%</td>
</tr>
<tr>
<td></td>
<td>Disseminated (miliary)</td>
</tr>
<tr>
<td></td>
<td>disease or TBM, 10–20%</td>
</tr>
<tr>
<td>1–2</td>
<td>No disease, 75–80%</td>
</tr>
<tr>
<td></td>
<td>Pulmonary disease, 10–20%</td>
</tr>
<tr>
<td></td>
<td>Disseminated (miliary)</td>
</tr>
<tr>
<td></td>
<td>disease or TBM, 2–5%</td>
</tr>
<tr>
<td>2–5</td>
<td>No disease, 95%</td>
</tr>
<tr>
<td></td>
<td>Pulmonary disease, 5%</td>
</tr>
<tr>
<td></td>
<td>Disseminated (miliary)</td>
</tr>
<tr>
<td></td>
<td>disease or TBM, 0.5%</td>
</tr>
<tr>
<td>5–10</td>
<td>No disease, 98%</td>
</tr>
<tr>
<td></td>
<td>Pulmonary disease, 2%</td>
</tr>
<tr>
<td></td>
<td>Disseminated (miliary)</td>
</tr>
<tr>
<td></td>
<td>disease or TBM, <0.5%</td>
</tr>
<tr>
<td>>10</td>
<td>No disease, 80–90%</td>
</tr>
<tr>
<td></td>
<td>Pulmonary disease, 10–20%</td>
</tr>
<tr>
<td></td>
<td>Disseminated (miliary)</td>
</tr>
<tr>
<td></td>
<td>disease or TBM, <0.5%</td>
</tr>
</tbody>
</table>

Table 1: Age and risk of progression to disease in immunocompetent children

Fig. 1: Ghon’s complex and its fate
nodosum with Mantoux becoming positive and chest X-ray showing
the primary complex. Phase 2 usually is noted 1–3 months after
the primary infection after the spread of the organism through the
bloodstream. Younger children in this phase have the highest risk
for miliary and tuberculous meningitis but both these conditions
can occur at any time period. In phase 3, which occurred 3–7 months
after primary infection, a bronchial disease in less than 5 years age
and pleural disease in older children are seen. Phase 4 was seen one
to three years after the primary infection during which osteoarticular
involvement in under 5 years aged children and adult type TB in
adolescents occurred. Phase 5 occurred three years after the primary
infection in which reactivation tuberculosis developed. But one has
to accept that this timeline need not be followed by TB bacilli. Figure
1 gives a bird’s eye view of the fate of the primary TB.

The cell-mediated response usually appears about 2–12 weeks
after the initial infection along with tissue hypersensitivity and most
often those with the infection do not go on to develop active TB.
Once the lymphocytes are able to recognize the mycobacterial
antigens after the TB bacilli enter the macrophages, secretion of
lymphokines and other mediators occur. They not only attract
the other lymphocytes but also activate the macrophages to
produce a high concentration of lytic enzymes to increase their
mycobactericidal capacity. Both T helper cells and T suppressor
cells help to modulate the immune response to develop specific
cell-mediated immunity (CMI) thereby preventing the progression
of the infection. CMI enhance intracellular killing while tissue
hypersensitivity enhances extracellular killing. Granuloma forms
when antigen load is small, and tissue hypersensitivity is high.
Caseation occurs when antigen load and tissue hypersensitivity
are high. Dissemination occurs when tissue hypersensitivity is low.

TB is a curable disease. The natural history of the disease helps
in understanding the disease pathology clearly. The way the
host immune system handles the infection influence the disease
manifestation in children.

Understanding this helps us to diagnose TB early and treat
correctly so that morbidity and mortality is reduced.

REFERENCES
tbfacts.org/history-of-tb-drugs/accessed on 30th Dec 2018
2. Bass JB Jr. B. The Tuberculin Skin Test . Tuberculosis in the
Workplace. Institute of Medicine (US) Committee on Regulating
Occupational Exposure to Tuberculosis; Field MJ, editor.
Washington (DC): National Academies Press (US); 2001: pp 179-
188.
3. Wallgren A. Primary pulmonary tuberculosis in childhood. Am J
4. Marais BJ, Gie RP, Schaaf HS, et al. The natural history of
childhood intra-thoracic tuberculosis—A critical review of the
5. Vijayasekeran D, Subramanyam L. Childhood tuberculosis. In
Essentials of Pediatric Pulmonology. Ed Subramanyam L. 3rd
Edition. Pediatric Pulmonnology Foundation of India, Chennai
6. Donald PR, Marais BJ, Barry CE III. The influence of age on
the epidemiology and pathology of tuberculosis. Lancet
2010;375:1852-1854.
manifestations in childhood pulmonary tuberculosis. Ann Trop
Paediatr 2005;25:79-86
tuberculosis. BMC Infectious Diseases 2014